FLY Датчик со сменным сенсором

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

(ПАСПОРТ)

СОДЕРЖАНИЕ

Введение	1
Назначение	1
Внешний вид и конструкция	1
Монтаж	3
Подключение	4
Обслуживание и калибровка	5
Сведения о сертификации	5
Технические характеристики	6
Приложение 1	7
Приложение 2	7
Приложение 3	8
Гарантия	9

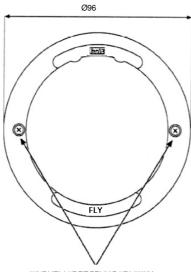
Введение

Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией и обслуживанием датчиков горючих и угарных газов FLY.

ВНИМАНИЕ!

Внимательно изучите Руководство перед монтажом и эксплуатацией. Вмешательство в конструкцию датчика или его неправильная установка могут привести к поражению электрическим током! Помните — установка систем контроля горючих и токсичных газов не должна давать повод для нарушения правил и законов, связанных с размещением и хранением горючих, токсичных и других опасных материалов, а также эксплуатации вентиляционных установок! Установка газового оборудования и закономи арматуры должна проводиться в порядке, установленном правилами и законами.

Назначение


Датчики FLY со сменным сенсором СК (далее в Руководстве датчики) предназначены для работы в системах беспрерывного контроля горючих газов. Имеют пороговый аналоговый выход 4-12-20 mA, соответствующий концентрации контролируемого газа как воздух – предтревога - тревога. Датчики работают в комплексе с блоками управления серии ASTRA, WP/DIN и LINEAR. Данные датчики легко согласуются с системами АСУ ТП, а также с любыми импортными и отечественными блоками управления, имеющими пороговый аналоговый вход 4-12-20 mA. Основная сфера применения датчиков FLY - промышленные котельные, химические лаборатории и бытовой сектор. Полную спецификацию датчиков FLY по типу контролируемых газов можно узнать из приложения 1.

Применение в датчике каталитического элемента высокого разрешения в сочетании с помехоустойчивым устройством электронного управления обеспечивает высокую эффективность датчика по выявлению интерферирующих газов, являющихся причиной ложного срабатывания, и гарантирует повышенную точность измерений.

Использование сменного модуля СК позволяет продлить срок службы датчика до 12 лет и оперативно произвести замену отработавшего свой срок или вышедшего из строя сенсора.

Внешний вид и конструкция

Внешний вид датчика изображен на рисунке 1. Корпус выполнен из негорючего пластика, имеет степень защиты IP55 и отлично защищает датчик от воздействия внешних факторов. Конструкция состоит из основания и верхней крышки, стянутыми между собой двумя шурупами. Для снятия верхней крышки необходимо полностью вывернуть крепежные шурупы. На плате, расположенной внутри корпуса, установлен сменный модуль СК и клемная колодка для подключения питания и выходного сигнала (рисунок 2).

ШУРУПЫ КРЕПЛЕНИЯ КРЫШКИ

Рисунок 1.

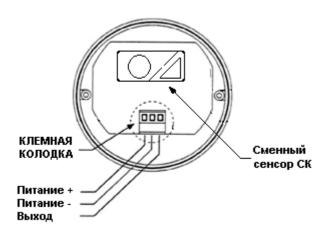


Рисунок 2.

Монтаж

Операция по монтажу и подключению должна проводиться только квалифицированным персоналом. Датчики устанавливаются в местах наиболее возможных утечек газа. При выборе места для установки необходимо учитывать нижеследующие факторы.

- 1. Установку следует производить в местах, защищенных от механических воздействий и атмосферных осадков.
- 2. Датчики должны располагаться в легкодоступных местах для обеспечения контроля электрических соединений и периодического обслуживания.
- 3. Необходимо учитывать конструкцию стен, перегородок, тоннелей и полостей, которые могут способствовать накоплению газа.
- 4. Не рекомендуется располагать датчики ближе 1 метра от источников тепла, естественной и принудительной вентиляции.
- 5. Для определения высоты установки датчика необходимо учитывать относительную плотность контролируемого газа. Если относительная плотность газовой смеси меньше 0,8 она считается легче воздуха и стремится вверх. В этом случае датчик необходимо устанавливать вблизи потолка. Если относительная плотность газовой смеси больше 1,2 она считается тяжелее воздуха и стремится вниз. В таком случае датчики устанавливаются на уровне пола. При нахождении плотности газовой смеси в пределах 0,8 1,2 следует рассматривать оба варианта. В приложении 3 приводится схема мест установки и относительная плотность для основных типов горючих и токсичных газов.

Устанавливать датчики можно как на стены, так и на потолки. Установка на потолки рекомендуется только в том случае, если относительная плотность контролируемого газа намного меньше воздуха или установка на стены невозможна.

В монтажный комплект датчиков входят кабельный уплотнитель, заглушка, герметичный ввод, два дюбеля диаметром 5 мм и два шурупа. Для крепления датчика на стену или к потолку необходимо выполнить следующее:

- Открыть корпус, ослабив два шурупа крепления верхней крышки (рисунок 1).
- Надежно закрепить датчик к стене или потолку с помощью дюбелей и шурупов, входящих в комплект поставки.
- При использовании скрытой электропроводки завести кабель в датчик через отверстие на дне корпуса, применяя кабельный уплотнитель из комплекта поставки.
- При использовании открытой электропроводки завести кабель в датчик через отверстие сбоку, применяя кабельный уплотнитель из комплекта поставки.
- При наличии внешней трубы для электропроводки (металлической или ПВХ Ø16 мм) завести кабель в датчик через отверстие сбоку, применив герметичный ввод из комплекта поставки.

По окончании работы плотно закрыть неиспользованное отверстие на дне или сбоку датчика с помощью заглушки, входящей в комплект поставки.

Подключение

Во избежание поражения электрическим током производить любые подключения следует только при полном отсутствии питающего напряжения!

Для подключения датчика необходимо выполнить следующее:

- Соединить клеммы «S» , «+» и «-» с соответствующими клеммами блока управления при помощи трехжильного медного кабеля сечением не менее 0,5 мм². Длинна кабеля, в зависимости от сечения, может достигать 1000 метров (приложение 2).
- 2. Включить блок управления и с помощью вольтметра измерить питающее напряжение между клеммами «+» и «-». Оно должно находиться в пределах 10 30 V DC:
- Подождать 15 минут для обеспечения прогрева и стабилизации датчика.
- Произвести испытание датчика, подав на него ПГС (поверочную газовую смесь).
 Расход ПГС должен находиться в пределах 0,3 1литр в минуту в зависимости от типа применяемого сенсора СК.
- 5. Закрыть крышку датчика и затянуть крепежные шурупы (рисунок 1).

Датчик готов к работе.

В датчиках FLY предусмотрена возможность подачи питания на датчик непосредственно в рабочей зоне от внешнего источника питания.

Источник питания должен быть рассчитан на выходное напряжение 10 - 30 V DC, и ток нагрузки не менее 100 mA. Для подключения датчика с использованием внешнего источника питания необходимо выполнить следующее:

- 1. Соединить клеммы «+» и «-» с соответствующими клеммами внешнего источника питания при помощи двухжильного медного кабеля сечением не менее 0,5 мм².
- Соединить клеммы «S» и «-» с соответствующими клеммами блока управления при помощи двухжильного медного кабеля сечением не менее 0,5 мм². Длинна кабеля, в зависимости от сечения, может достигать 1000 метров (приложение 2).
- 6. Включить блок управления и внешний источник питания, с помощью вольтметра измерить питающее напряжение между клеммами «+» и «-». Оно должно находиться в пределах 10 30 V DC.
- Подождать 15 минут для обеспечения прогрева и стабилизации датчика.
- Произвести испытание датчика, подав на него ПГС (поверочную газовую смесь).
 Расход ПГС должен находиться в пределах 0,3 1литр в минуту в зависимости от типа применяемого сенсора СК.
- 5. Закрыть крышку датчика и затянуть крепежные шурупы (рисунок 1).

Датчик готов к работе.

Обслуживание и калибровка

Срок службы датчиков зависит от условий эксплуатации. Не рекомендуется устанавливать датчики в местах с повышенным содержанием горючих, силиконовых и коррозийных паров. Категорически запрещается использовать для очистки корпуса датчика аэрозоли и моющие средства! В случае необходимости, очистка корпуса осуществляется при помощи смоченной в воде ткани и только на внешней части корпуса.

В идеальных условиях датчики данного типа будут удовлетворительно работать до 5 лет. Рекомендуется раз в год проводить испытания датчиков с помощью ПГС (поверочной газовой смеси). Если в результате проверки выяснилось, что датчик неработоспособен, необходимо заменить сменный сенсор СК.

Датчики FLY откалиброваны на заводе – изготовителе в соответствие с техническими характеристиками. Дальнейшая калибровка в процессе эксплуатации не требуется.

Сведения о сертификации

Газовые датчики FLY имеют сертификат соответствия, метрологический сертификат и разрешения ГОСТЕХНАДЗОРА на применение в Российской федерации.

Характеристика	Значение
Напряжение питания	10 - 30 V DC
Максимальный ток потребления при U пит. 10 V	95 mA
Максимальный ток потребления при U пит. 30 V	45 mA
Выходной сигнал	пороговый 4-12-20 mA
Тип сенсора	каталитический
Время прогрева сенсора	< 30 сек.
Предусмотренный срок службы сенсора	5 лет
Предусмотренный срок службы датчика	12 лет
Материал корпуса	негорючий пластик UL94V0
Степень защиты	IP 55
Рабочая температура	-15 +50 °C
Относительная влажность воздуха	5 – 95 % без конденсата
Габариты	d=96 мм h=59 мм
Вес прибора	153 г.

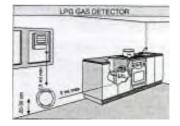
Параметры выходного сигнала.

Параметр	Значение
Воздух	4 mA
Предтревога	12 mA
Тревога	20 mA
Ошибка	< 2 mA , >20 mA

Газ	Сенсор датчика	Модель датчика	Реле и сигнал и-зация	Питание	Уровень пред- тревоги	Уровень тревоги
CH₄	CK1	B20-FLC1	-	10-30 V DC	6% Н.П.В.	10% H.Π.B.
0114	OK I	B20-FLC1 20%	1	10-30 V DC	10% Н.П.В.	20% Н.П.В.
L.P.G. (сжиженный нефтяной газ)	CK3	B20-FLC2		10-30 V DC	6% Н.П.В.	10% Н.П.В.
	B20-FLC2 20%	-	10-30 V DC	10% Н.П.В.	20% Н.П.В.	

Приложение 1. Спецификация датчиков FLY.

Сечение (мм²)	Длинна кабеля (м)
0,5	200
1	400
1,5	600
2,5	1000


Приложение 2. Выбор сечения кабеля.

Наименование	Химическая формула	Относительная плотность
Водород	H ₂	0,07
Метан	CH ₄	
Аммиак	NH ₃	0,59
Ацетилен	C ₂ H ₂	0,90
Угарный газ	СО	0,97
Воздух		1
Этан	C ₂ H ₆	1,04
Метанол	CH₃OH	1,11
Пропилен	C₃H ₆	1,5
Пропан	C ₃ H ₈	1,56
Этанол	C ₂ H ₅ OH	1.59
Сжиженный нефтяной газ	-	1,86
Углекислый газ	CO ₂	1,98
Ацетон	C ₃ H ₆ O	2
Изобутан	C ₄ H ₁₀	2
Пары бензина	-	от 3 до 4

Установка датчиков FLY на L.P.G.

Приложение 3. Схема мест установки и относительная плотность горючих и токсичных газов.

ЗАКАЗАТЬ: FLY датчики горючих газов

Гарантия

Гарантия на оборудование 2 года, при условии соблюдения настоящего Руководства. Межповерочный интервал – 1 год.

Заводской номер	
Отметки сервисного центра	
	проверки
Отметки о продаже	Сервисный центр продавца
Продавец	
Наименование прибора	
Серийный номер прибора	
Дата продажи	
М.П.	

Отметки о Поверке прибора

Ответственное лицо	Ответственное лицо
МП	МП
" "20г.	" "20г.
Ответственное лицо	Ответственное лицо
МП	МП
" "20г.	" "20г.