

SO2-BF Sulfur Dioxide Sensor

Figu Specification PE LIF EΝ echnical CR SE KE SP

ure 1 SOZ-BF Schematic Diagram			ATENTED
Top View	Reference Sensing area Do not obscure	4 ⁵ Worker Counter Counter SULFUR DIOXIDE SO2-BF 12345677 999 999 1 recess d2.8	
ERFORMANCE	Sensitivity Response time Zero current Resolution Range Linearity Overgas range	$\begin{array}{l} \text{nA/ppm in 20ppm SO}_2 \\ t_{90} \text{ (s) from zero to 20ppm SO}_2 \\ \text{ppm equivalent in zero air} \\ \text{RMS noise (ppm equivalent)} \\ \text{ppm limit of performance warranty} \\ \text{ppm error at full scale, linear at zero and 20ppm SO}_2 \\ \text{maximum ppm for stable response to gas pulse} \end{array}$	300 to 440 < 30 < ± 0.5 < 0.1 100 < ± 2 500
IFETIME	Zero drift Sensitivity drift Operating life	ppm equivalent change/year in lab air % change/month in lab air, twice monthly test months until 80% original signal (24 month warranted)	nd < 2 > 24
NVIRONMENTAL	Sensitivity @ -20°C Sensitivity @ 50°C Zero @ -20°C Zero @ 50°C	% (output @ -20°C/output @ 20°C) @ 20ppm % (output @ 50°C/output @ 20°C) @ 20ppm ppm equivalent change from 20°C ppm equivalent change from 20°C	84 to 94 96 to 102 < ± 0.4 < ± 3
ROSS ENSITIVITY	$\begin{array}{lll} \mbox{Filter capacity} \\ \mbox{NO} & \mbox{sensitivity} \\ \mbox{NO}_2 & \mbox{sensitivity} \\ \mbox{Cl}_2 & \mbox{sensitivity} \\ \mbox{H}_2 & \mbox{sensitivity} \\ \mbox{CO} & \mbox{sensitivity} \\ \mbox{C}_2\mbox{H}_4 & \mbox{sensitivity} \\ \mbox{NH}_3 & \mbox{sensitivity} \end{array}$	ppm·hrs H_2S % measured gas @ 50ppmNO% measured gas @ 10ppm NO_2 % measured gas @ 10ppm CI_2 % measured gas @ 400ppm H_2 % measured gas @ 400ppmCO% measured gas @ 400ppm C_2H_4 % measured gas @ 20ppm NH_3	450 < -3 < -120 < -50 < 0.1 < 1 < 40 < 0.1
EY PECIFICATIONS	Temperature range Pressure range Humidity range Storage period Load Resistor Weight	$^{\circ}$ C kPa $^{\circ}$ rh continuous (see note below) months @ 3 to 20 ^{\circ}C (stored in sealed pot) Ω (recommended) g	-30 to 50 80 to 120 15 to 90 6 10 to 47 < 13

Note: Above 85% rh and 40°C a miximum continuous exposure period of 10 days is warranted. Where such exposure occurs the sensor will recover normal electrolyte volumes when allowed to rest at lower % rh and temperature levels for several days.

NOTE: all sensors tested and stored at ambient environments unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.

Alphasense Ltd, Sensor Technology House, 300 Avenue West, Skyline 120, Great Notley. CM77 7AA. UK Telephone: +44 (0) 1376 556 700 Fax: +44 (0) 1371 335 899 E-mail: sensors@alphasense.com Website: www.alphasense.com

SO2-BF Performance Data

Figure 2 Sensitivity Temperature Dependence

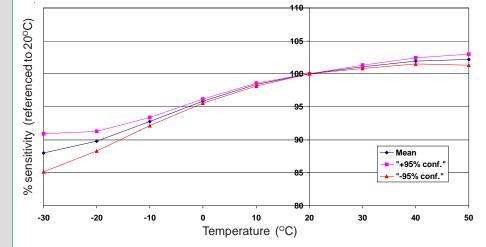


Figure 2 shows the variation in sensitivity caused by changes in temperature.

This data is taken from a typical batch of sensors. The mean and \pm 95% confidence intervals are shown.

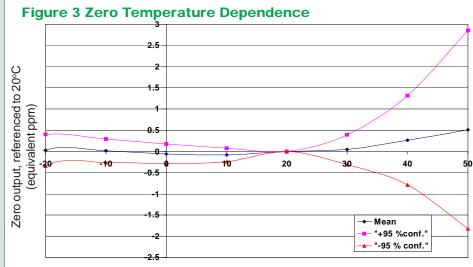


Figure 3 shows the variation in zero output caused by changes in temperature expressed as ppm gas equivalent.

This data is taken from a typical batch of sensors. The mean and \pm 95% confidence intervals are shown.

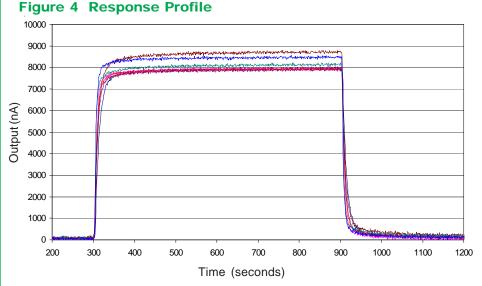


Figure 4 shows the response to 20 ppm SO2-BF.

This data is taken from a typical batch of sensors. The t_{90} response for the SO2-BF sensor is less than 30 seconds.

For further information on the performance of this sensor, on other sensors in the range or any other subject, please contact Alphasense Ltd. For application notes visit "www.alphasense.com".

In the interest of continued product improvement, we reserve the right to change design features and specifications without prior notification. The data contained in this document is for guidance only. Alphasense Ltd accepts no liability for any consequential losses, injury or damage resulting from the use of this document or the information contained within it (©ALPHASENSE LTD) Doc. Ref. TDS/S02BF/Issue 14

Catl Deciti chnica